100% DE RABAIS | Régression linéaire et régression logistique en Python

[ad_1]

Vous cherchez un complet Cours de régression linéaire et de régression logistique qui vous apprend tout ce dont vous avez besoin pour créer un modèle de régression linéaire ou logistique en Python, non?

Obtenez le coupon Udemy 100% de réduction pour la régression linéaire et la régression logistique dans le cours Python

Vous avez trouvé le bon cours de régression linéaire!

Après avoir terminé ce cours vous serez en mesure de:

  • Identifier le problème commercial qui peut être résolu en utilisant la technique de régression linéaire et logistique du Machine Learning.
  • Créez un modèle de régression linéaire et de régression logistique en Python et analysez son résultat.
  • Modélisez et résolvez en toute confiance les problèmes de régression et de classification

UNE Certificat d’achèvement vérifiable est présenté à tous les étudiants qui suivent ce cours de base sur l’apprentissage automatique.

Que couvre ce cours?

Ce cours vous apprend toutes les étapes de la création d’un modèle de régression linéaire, qui est le modèle d’apprentissage automatique le plus populaire, pour résoudre des problèmes commerciaux.

Voici le contenu de ce cours sur la régression linéaire:

  • Section 1 – Bases des statistiquesCette section est divisée en cinq conférences différentes à partir des types de données puis des types de statistiques

    puis des représentations graphiques pour décrire les données puis une conférence sur les mesures de centre comme moyenne

    médiane et mode et enfin mesures de dispersion comme la plage et l’écart type

  • Section 2 – Python basiqueCette section vous permet de démarrer avec Python.

    Cette section vous aidera à configurer l’environnement python et Jupyter sur votre système et vous expliquera

    vous comment effectuer certaines opérations de base en Python. Nous comprendrons l’importance de différentes bibliothèques telles que Numpy, Pandas & Seaborn.

  • Section 3 – Introduction à l’apprentissage automatiqueDans cette section, nous allons apprendre – Que signifie l’apprentissage automatique? Quelles sont les significations ou les différents termes associés à l’apprentissage automatique? Vous verrez quelques exemples pour comprendre ce qu’est réellement l’apprentissage automatique. Il contient également des étapes impliquées dans la construction d’un modèle d’apprentissage automatique, pas seulement des modèles linéaires, tout modèle d’apprentissage automatique.
  • Section 4 – Prétraitement des donnéesDans cette section, vous apprendrez quelles actions vous devez entreprendre étape par étape pour obtenir les données, puis

    préparer pour l’analyse ces étapes sont très importantes.

    Nous commençons par comprendre l’importance de la connaissance métier, puis nous verrons comment faire l’exploration des données. Nous apprenons à faire une analyse univariée et une analyse bivariée, puis nous abordons des sujets comme traitement des valeurs aberrantes, imputation de valeur manquante, transformation et corrélation variables.

  • Section 5 – Modèle de régressionCette section commence par une régression linéaire simple et couvre ensuite la régression linéaire multiple.

    Nous avons couvert la théorie de base derrière chaque concept sans être trop mathématique à ce sujet afin que vous

    comprendre d’où vient le concept et en quoi il est important. Mais même si vous ne comprenez pas

    ça ira tant que vous apprendrez à exécuter et à interpréter le résultat comme enseigné dans les conférences pratiques.

    Nous examinons également comment quantifier la précision des modèles, quelle est la signification de la statistique F, comment les variables catégorielles du jeu de données de variables indépendantes sont interprétées dans les résultats, quelles sont les autres variations de la méthode des moindres carrés ordinaires et comment pouvons-nous finalement interpréter le résultat pour trouver la réponse à un problème commercial.

À la fin de ce cours, votre confiance dans la création d’un modèle de régression en Python va monter en flèche. Vous aurez une connaissance approfondie de l’utilisation de la modélisation de régression pour créer des modèles prédictifs et résoudre des problèmes commerciaux.

Comment ce cours vous aidera-t-il?

Si vous êtes un chef d’entreprise ou un cadre, ou un étudiant qui veut apprendre et appliquer le machine learning dans les problèmes réels du monde des affaires, ce cours vous donnera une base solide pour cela en vous enseignant les techniques les plus populaires du machine learning, qui est la régression linéaire et la régression logistique

Pourquoi devriez-vous choisir ce cours?

Ce cours couvre toutes les étapes à suivre pour résoudre un problème commercial par régression linéaire et logistique.

La plupart des cours se concentrent uniquement sur l’enseignement de l’exécution de l’analyse, mais nous pensons que ce qui se passe avant et après l’exécution de l’analyse est encore plus important, c’est-à-dire avant de lancer l’analyse, il est très important que vous ayez les bonnes données et que vous effectuiez un prétraitement. Et après avoir exécuté l’analyse, vous devriez pouvoir juger de la qualité de votre modèle et interpréter les résultats pour réellement aider votre entreprise.

Qu’est-ce qui nous rend qualifiés pour vous enseigner?

Le cours est dispensé par Abhishek et Pukhraj. En tant que responsables de la société de conseil Global Analytics, nous avons aidé les entreprises à résoudre leurs problèmes commerciaux à l’aide de techniques d’apprentissage automatique et nous avons utilisé notre expérience pour inclure les aspects pratiques de l’analyse des données dans ce cours.

Nous sommes également les créateurs de certains des cours en ligne les plus populaires – avec plus de 150 000 inscriptions et des milliers de critiques 5 étoiles comme celles-ci:

C’est très bien, j’adore le fait que toutes les explications données puissent être comprises par un profane – Joshua

Merci Auteur pour ce merveilleux cours. Vous êtes le meilleur et ce cours vaut n’importe quel prix. – Marguerite

Qu’est-ce que l’apprentissage automatique?

L’apprentissage automatique est un domaine de l’informatique qui donne à l’ordinateur la capacité d’apprendre sans être explicitement programmé. C’est une branche de l’intelligence artificielle basée sur l’idée que les systèmes peuvent apprendre des données, identifier des modèles et prendre des décisions avec une intervention humaine minimale.

Quelle est la technique de régression linéaire de l’apprentissage automatique?

La régression linéaire est un modèle d’apprentissage automatique simple pour les problèmes de régression, c’est-à-dire lorsque la variable cible est une valeur réelle.

La régression linéaire est un modèle linéaire, par ex. un modèle qui suppose une relation linéaire entre les variables d’entrée (x) et la variable de sortie unique (y). Plus précisément, que y peut être calculé à partir d’une combinaison linéaire des variables d’entrée (x).

Lorsqu’il n’y a qu’une seule variable d’entrée (x), la méthode est appelée régression linéaire simple.

Lorsqu’il existe plusieurs variables d’entrée, la méthode est connue sous le nom de régression linéaire multiple.

Pourquoi apprendre la technique de régression linéaire de l’apprentissage automatique?

Il y a quatre raisons d’apprendre la technique de régression linéaire de l’apprentissage automatique:

1. La régression linéaire est la technique d’apprentissage automatique la plus populaire

2. La régression linéaire a une assez bonne précision de prédiction

3. La régression linéaire est simple à mettre en œuvre et à interpréter

4. Il vous donne une base solide pour commencer à apprendre d’autres techniques avancées de Machine Learning

Combien de temps faut-il pour apprendre la technique de régression linéaire de l’apprentissage automatique?

La régression linéaire est facile mais personne ne peut déterminer le temps d’apprentissage nécessaire. Cela dépend totalement de vous. La méthode que nous avons adoptée pour vous aider à apprendre la régression linéaire commence par les bases et vous amène à un niveau avancé en quelques heures. Vous pouvez suivre la même chose, mais n’oubliez pas que vous ne pouvez rien apprendre sans le pratiquer. La pratique est le seul moyen de se souvenir de tout ce que vous avez appris. Par conséquent, nous vous avons également fourni un autre ensemble de données sur lequel travailler en tant que projet distinct de régression linéaire.

Quelles sont les étapes à suivre pour pouvoir créer un modèle d’apprentissage automatique?

Vous pouvez diviser votre processus d’apprentissage en 4 parties:

Statistiques et probabilités – La mise en œuvre de techniques d’apprentissage automatique nécessite une connaissance de base des statistiques et des concepts de probabilité. La deuxième section du cours couvre cette partie.

Comprendre l’apprentissage automatique – La quatrième section vous aide à comprendre les termes et concepts associés à l’apprentissage automatique et vous donne les étapes à suivre pour créer un modèle d’apprentissage automatique

Expérience de programmation – Une partie importante de l’apprentissage automatique est la programmation. Python et R se distinguent clairement pour être les leaders ces derniers jours. La troisième section vous aidera à configurer l’environnement Python et vous apprendra quelques opérations de base. Dans les sections ultérieures, il y a une vidéo sur la façon de mettre en œuvre chaque concept enseigné en cours théorique en Python

Compréhension de la modélisation de régression linéaire et logistique – Avoir une bonne connaissance de la régression linéaire et logistique vous donne une solide compréhension du fonctionnement de l’apprentissage automatique. Même si la régression linéaire est la technique la plus simple de l’apprentissage automatique, elle est toujours la plus populaire avec une assez bonne capacité de prédiction. La cinquième et la sixième section couvrent le sujet de la régression linéaire de bout en bout et avec chaque conférence théorique, une conférence pratique correspondante nous permet d’exécuter chaque requête avec vous.

Pourquoi utiliser Python pour le Data Machine Learning?

Comprendre Python est l’une des compétences précieuses nécessaires pour une carrière dans l’apprentissage automatique.

Bien que cela n’ait pas toujours été le cas, Python est le langage de programmation de choix pour la science des données. Voici un bref historique:

En 2016, il a dépassé R sur Kaggle, la première plateforme de concours de science des données.

En 2017, il a dépassé R dans le sondage annuel de KDNuggets sur les outils les plus utilisés par les scientifiques des données.

En 2018, 66% des scientifiques des données ont déclaré utiliser Python quotidiennement, ce qui en fait l’outil numéro un pour les professionnels de l’analyse.

Les experts du Machine Learning s’attendent à ce que cette tendance se poursuive avec un développement croissant de l’écosystème Python. Et même si votre voyage pour apprendre la programmation Python ne fait que commencer, il est agréable de savoir que les opportunités d’emploi sont également abondantes (et en croissance).

À qui s’adresse ce cours:

  • Personnes poursuivant une carrière en science des données
  • Des professionnels qui commencent leur parcours data
  • Les statisticiens ont besoin d’une expérience plus pratique
  • Toute personne curieuse de maîtriser la régression linéaire et logistique du niveau débutant au niveau avancé dans un court laps de temps

QUE APPRENDREZ-VOUS DANS CE COURS:

SI VOUS TROUVEZ CECI COURS UDEMY GRATUIT  » Régression linéaire ”UTILE ET UTILE, VEUILLEZ ALLER DE L’AVANT PARTAGEZ LES CONNAISSANCES AVEC VOS AMIS PENDANT QUE LE COURS EST TOUJOURS DISPONIBLE

[ad_2]

Telecharger ici

Laisser un commentaire